MOTION OF A LIQUID FILM ON THE SURFACE
OF A ROTATING CYLINDER IN A GRAVITATIONAL FIELD

V. V. Pukhnachev UDC 532.516

1. Statement of the Problem

We consider the two-dimensional motion of a liquid film on the surface of a rotating cylinder in a gravi-
tational field (Fig. 1); a is the radius of the cylinder, w is its constant angular velocity about its axis, g is the
acceleration due to gravity, v is the kinematic viscosity, p is its density, and ¢ is the surface tension. Three
independent dimensionless combinations can be formed from these quantities: the Reynolds number Re=a %/v,
the Galileo number y =g/iw 2, and the inverse Weber number § = o/pa®e?.

The problem consists in determining the function h(6, t) positive for t = [0, Tl andall 6, and the solu-
tion u, v, p of the Navier — Stokes equations '
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the condition that h, u, v, and p be periodic in ¢ with the period 27, and the initial conditions

h = hy(8), u = uy(r, ), v ="o(r, 0) ar t=0. (1.6)

Here hy, u;, and v are given functions which are periodic in § with the period 27, and (rugy +vg,g =0.

All quantities in Eqs. (1.1)-(1.6) are dimensionless. We take the expressions a, 14, aw, and p a%w? as
length, time, velocity, and pressure scales, respectively. The Navier — Stokes equations (1.1) are written in
polar coordinates r, 8 with the pole at the center of a cross section of the cylinder and the polar axis per-
pendicular to the direction of gravity; u and v are the radial and peripheral velocity components.

Conditions (1.2) are the conditions for no slipping between the liquid and the surface of the rotating cyl-
inder. Equation (1.3) states that the free boundary r =1 +h(6, t) bounds the liquid volume. Equation (1.4) ex-
presses the absence of tangential stress at the free boundary and (1.5), the equality-of the normal stress. and
the capillary pressure. ’
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Fig. 1

A rigorous mathematical treatment of the unsteady motion of a viscous liquid with a free boundary, a
class of problems which includes (1.1)-(1.6), was begun relatively recently. By neglecting surface tension and
assuming that the entire boundary of the liquid is a free surface, Solonnikov [1] proved that the Navier ~ Stokes
equations for the unsteady problem have a unique solution on a certain finite time interval. By making a small
change in the treatment in [1] this theorem can be extended to the case of a boundary of the flow region con-
sisting of two nonintersecting parts: a free boundary and a smooth solid surface on which the nonslip condition
is satisfied. This leads to the following statement on the solvability of problem {1.1)-(1.6) when 8 =0.

We assume that the function hy(6) is positive, periodic in 6 with the period 27, and belongs to the Holder
class C2™  ¢<q <1, and that the functions uy(r, 9),Vy (r, §) are also periodic in g with the period 2 rand belong to
the class C**?inthe closed region: 1<r=<1+ h, (6). Inaddition, we assume that the initial velocity field u,, v,
satisfies the equation of continuity in the region Q,, the nonslip condition (1.2) at r =1, and the condition for no
tangential stress (1.4) at r =1 +h,. Then there exists a T > 0 such that problem (1.1)-(1.6) with 8 =0 has a
unique solution on the interval 0 <t <T.

The question of the solvability (even local) of problem (1.1)-(1.6) when 5= 0 so far remains open.

The problem under consideration has a number of technical applications [2]. n these applications the
thickness of the liquid film is generally small in comparison with the radius of the cylinder. The approximate
equations describing the motion of a thin film on the surface of a rotating cylinder for small Reynolds numbers
were derived in [2].

The problem of the steady flow of a heavy liquid on the surface of a rotating cylinder is of independent
interest. It consists in finding the function h(8) and the time-independent solution of the system (1.1) which
satisfies conditions (1.2)-(1.5) and one of the following subsidiary conditions:

1—}/1.(8)
L‘ v{r,0) dr=g; .7
1
2n

{1 (8)do = 27 (1.8)

0
with given positive constants q and h. Condition (1.8) gives the average thickness of the film and (1.7), the flow
rate of liquid through a cross section of the film. It is clear that the integral on the left-hand side of Eq. (1.7)
does not depend on 6. Condition (1.7) or (1.8) is necessary to separate the unique solution from the one-param-
eter family of steady solutions of problem (1.1)-(1.5). ‘

A theorem on the existence and uniqueness of the solution of the steady problem (1.1)-(1.5), (1.7) for
small Galileo numbers ¥ was announced in [3].

2. A Theorem on the Existence and Uniqueness of the Steady

Solution
We consider system (1.1) in the steady case. Introducing the stream function i (r, 6) by the relations

1 4 8
=t 2 2 @.1)
we replace system (1.1) by a single equation for the stream function

) R 2(p,Ap)
ALY — = a(r,0) 0, 2.2)

where Ay =r 1y )y +T" %059
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In the steady case we denote the region occupied by the liquid by Q and the free boundary, by I'. The
nonslip conditions (1.2) are satisfied on the outer boundary I of region £ as a consequence of (2.1) and can be
written in the form

=0, 0p/or=1a r=1. 2.3)

We fix the arbitrariness in the determination of the stream function by setting y =0 on the streamline r=1. In
the steady case the kinematic condition on the free boundary (1.3) and the flow rate condition (1.7) lead to the
relation

Y=gqa r=1+ ko). 2.4

The dynamic conditions (1.4) and (1.5) lead to the following conditions for the stream function on the curve T

[31:
Ay — 2Kdp/on =0 at  r=1-+h(0); (2.5)

aA1p+ )  Re 6 (ﬁ)z_‘_ﬁéﬁ_'y[(i+h)cosﬂ+hesin9]=

e R at r=1+1(0), (2.6)

ds%an 2 ads

where K is the curvature of the curve T", with K> 0 if T" is convex outward from the liquid. The expression
8/9s denotes differentiation along the tangent and 8/8n, along the outward normal to I'. The positive direction
of the tangent to the curve T is chosen so that the tangential component of the vector s is positive (cf. Fig. 1).
Condition (2.5) follows from (1.4), (1.3), and (2.1), To obtain (2.6) it is necessary to differentiate Eq. (1.5)
along T and to use (1.1) to eliminate the term 8p/ds which arises. To the conditions enumerated is added the
periodicity condition

W(r, 8 + 2m) = ¥(r, 0), h® + 2n) = h(O). @.7

The final formulation of the steady problem is the following: to determine the positive function h(6) and
the solution ¥ (r, 6) of Eq. (2.2) in the region 1<r <1 +h(6) so that Eqs. (2.3)-(2.7) are satisfied. If y=0 (o
gravity), the problem has a trivial solution ¢ = (2 — 1)/2, b = V1 F 2¢ 2q — 1 = b = const, describing the rotation
of the liquid as a rigid body. It can be shown that this solution is unlque Solutions of problem (2.2)-(2.7) which
are close to trivial are analyzed below.

We study this problem with an unknown boundary by transforming to new independent variables 6, y (von
Mises variables) and a new unknown function r =¢ (6, y). According to (2.3) and (2.4), in the 6, y plane the
surface of the cylinder corresponds to the straight line y =0 and the free boundary, to the straight line y =q.
As a consequence of (2.2) the function ¢ satisfies the equation

£ — 1 L) L Bele 1Y
. S (ALJ & ) 7[(AC ng) ]\b Py (A5 Zgw)e 0. (2.8)
where A denotes the differential operator

The nonslip conditions (2.3) lead to the following conditions for the function ?:
{—1=0,¢y —1=0 for =0 (2.9)
Trom conditions (2.5) and (2.6) at the free boundary it follows that

2 (£2 + 285 — Lo) _
Ly (22 +29)

_Vc:;—ie(Ac__é_) . 2 1 (V§§2§+ge) ~ N
v oo VergVergt v o,

R L2+
AL~ ( ) +
z;l/c“rc( o 2V e\ P Jo
B 24205 — Llgg ¥ (Lcos B+ §e sin B)
V§z+:e[ V(e+oy ] ‘y g

A — % + for  $=gj (2.10)
P

for P=gq. (2.11)
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It is required to find the solution of Eq. (2.8) in the strip I1:0< ¢ < 1, which satisfies conditions (2.9)-{2.11)
and is periodic in ¢ with the period 27,

We denote by C§n+oz (1) the subspace of the Holder space chmta (II) formed by functions which are pemodlc
in 6 with the period 2. Here m=0 is an integer, 0 <« <1, and Iiis the closure of I1. We denote by | . | (m-+o)
the norm in this space. The symbols C%"”O‘ ®), .| (%”0‘) have a similar meaning, where E is a real stra{ght
line. Cg, Cy, ...are positive constants. We define a function ¢, = V1 4 2¢. This function is the solution of
problem (2.8)-(2.11) for y =0.

THEOREM. For all >0, Re=0, and §=0 there exists a y,> 0 such that for y & [0, y,] problems (2.8)-
{2.11) has the solution ; < C5%({1), which is unique in a certain sphere | — ¢, [{T < C,.

We prove this theorem by Newton's method. We define a Banach space X as the space of ‘the vector func-
tions x={ x;,..., %}, where z,(0, V) & €3 (1), 2, (8) = C3 "™ (E) for k=2,...,5. The norm in this space is
Ixjx =la i+ X o FH.
==l

We treat the boundary value problem (2.8)-(2.11) as an operator equation of the form

F(Z) =0, (2.12)
where the operator F(z) is defined in a sphere B,:|{ —¢,|# ™ ¢ of the space Ci‘)'*o‘(ﬁ):Z by the equation
F(2)={Fy(2), ..., F5(¢)} and operates in the space X. The components Fy,..., F; of the vector F are the dif-

ferential expressions on the left-hand sides of Eq. (2.8), the first and second conditions (2.10) and {2.11), re-
spectively. For example, F3(Z) = &y ~1 for y =0.

We take the Fréchet derivative of the operator F(g) in the sphere Be(0 <c <1). We denoteby F, (Z) its
Fréchet derivative at the point z = B, and set || ¢, ={¢ |(4+°‘ . Simple calculations show that for all ¢yand £,
from B

i Fo, — Fojx <(C5 9051 & — o L2

where Cgz and C; depend only on Re, 5, , and c. It is clear also that F(¢y = ={0,0,0,0,-ycosf} and
| F(zp|l ¢ =4y. For the following it is essential that the linear operator FC() have an inverse (F! 0)' :X—Z,
and that the estimate (proved later)

i(r)"I< ey (2.13)

be valid for all fixed ¢ >0, Re > 0,f > 0, ¢ =(0,1) and all v from the interval {0, y,] if y;> 0 is sufficiently
small,

We introduce the notation Cy=Cg+ ¥,C, and choose v, (0< y,=<7v;) small enough so that 16y,C}C,y< 1.
Then for y = [0, v} the conditions of Kantorovich's theorem on the convergence of Newton's operator method
{4] are satisfied for Eq. (2.12). According to this theorem, if & =16700§02< 1, Eq. 2.12) for 0 <y =y, hasa
unique solution in the sphere || ¢ —¢ ||, <Cq, where €, = minlC (1 — V1 — 8)/2C,, ¢]. The sequence {tn},in
which gy = /1 + 2¢ and
tn = Lot = (Fg,) 7' F (L) 2.1
for n =1 converges to this solution.
It remains to prove that the operator Fg has aninverse and to derive the estimate (2.13). Letus consider
the linear equation
F, (O) =x, (2.15)
where X is an arbitrary element of the space X. The change of variables r = V1 + 2, { == ¢/r transforms the
homogeneous problem for ¢ ¢, 8) corresponding to (2.15) to the form

AAg — Redqgy =0 for 1<<r<<ti+b=7VYI1-=2q, (2.16)
¢=¢, =0a r=1,"

A‘F—',%“(Fee’—f'(ﬁ:o‘ at r=1-=+0b.
),

(3¢); - == ((Pr - _;_p_)e —Re (‘Pr — —‘P—) + —rér (P08 =+ ¢)o T

r
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—j—%((pesinBT:—-cpcosB):O at r=1+b,
o(r, 8-+ 2m) = ¢(r, 6).

We show that for sufficiently small values of vy this problem has only a trivial solution. The solution of prob-
lem (2.186) satisfies the identity

1+b 27 ’ 2
ve i

1 1 \2 1 ‘ . . ; ‘ '
( g [((Prr — ¢ -rTfPee) +4 (—r—'(Pre '—";1'2- %o }rdrdﬁ = m‘%:y)a j 9% (1 -+ b, 0) cos 640, (2.17)
1 b o

which is obtained by multiplying the first of Eqs. (2.16) by ¢, integrating over the ammulus 1<r <1 +b, and
‘using the boundary conditions. By virtue of Korn's inequality for two-dimensional solenoidal vector fields [5]
and a theorem of Sobolev ontraces, it follows from (2.17) that ¢ =0 if 0 = y=< vy, and vy, is sufficiently small.

The boundary operators in (2.16) satisfy the complementarity condition [6] with respect to the operator
AA—~ReAd /8. Therefore, the absence of nontrivial solutions of the homogeneous problem (2.16) implies the
unique solvability of the corresponding inhomogeneous problem and Eq. (2.15) for any x &= X. The inequality-
(2.13) follows from a priori estimates in [6}. Thus the theorem is proved.

We note that as y —0 the solution of problem (2.1)-(2.11) can be estimated by
[E-VIT W[ =0). . .19

For sufficiently small y this estimate ensures the one-sheeted mapping of the strip II onto the flow region 1<
r<1+h(8), 0 = E. The solutiony = C*2 (9),h & C*+e (EYof the two-dimensional steady problem of a film cor-
responds to the solution {=C4+«(l) of problem (2.8)-(2.11).

The asymptotic solution of problem (2.8)-(2.11) for small y can be refined. According to (2.14) the
second term ¢, of the recurrent sequence { ;n} as y —0 can be written
L=VIT2 U +y+207"(VIT 20 0]+ 0.

Here ¢ (r, 6) is the solution of the linear problem (2.16) in which the second boundary condition at r=1+b is
replaced by

Ap, + (0, —2), —Re(p,— L) + Lot @o=—cosd @ r=1ts.

r

The foilowing estimate holds:
— it =04 = -0 @.19
g

To derive Egs. {2.18) and (2.19) it is sufficient to use the estimate of the error of the modified Newton's
method [4]. Equation (2.19) estimates how closely the linear term ¢, approximates the solution ¢ of problem
(2.8)-(2.11) for small v,

Remark 1. The solution of problem (2.8)-(2.11), which means also the solution of the initial problem
(2.2)-(2.7), depends continuously on the parameter B in any finite range of its variation. In particular, it is
assumed that 8 =0 (zero surface tension).

Remark 2. Using the estfmates of the solutions of elliptic equations [6] it can be shown that the solution
t(h,0) = CH(T1) of problem (2.8)-(2.11) actually belongs to the class C*({T). This implies that the velocity
field and the free boundary corresponding to it are also infinitely differentiable.

Remark 3. In formulating the two-dimensional steady problem of a film it would be possible to specify
the average film thickness h rather than the flow rate q. In view of the relation h(f) =¢ (6, @) —1 and (2.18)
there is a one-to-one relation between these quantities for small vy

CR=VT+2—1+0k).

3. Equations of Motion of a Thin Film

Let us assume that the initial value of the function h has the form h;= £ Hy(6), where £> 0 is a small
parameter. The parameter € has the meaning of the ratio of a characteristic (for example, average) thickness
of the film to the radius of the cylinder. The starting point for the derivation of the equations of 4 thin film is
the representation

h=ceH, r=14+¢ey, u=¢elU, v="7, 3.1)
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and the assumption that H, U, V and their derivatives with respect to t, ¢, and the new independent variable y
remain finite as €—0, Substituting (3.1) into the first two equations of (1.1) and condition (1.5) leads to the
equations

— VI O(e) = — - Py E?‘{; (L) — O (e)] ~— v sin @, (3.2)

ViUV =VVe+00)=—11-0(@)] Py—

{
" Fewe |

—BelHgy — H + Ofe)] = P — 2Re* {7, — O(e)} for y = H(B. ). (3.3)

Viyy—~0(&)]—yeos for O<y<H(6. 8

where p =p B. In.deriving Eq. (3.3) account was taken of the fact that in view of (1.4) Vy(H, 6,t)=0(g) as €0,

We determine P(y; 6, t) by integrating the first of Eqs. (3.2) with respect to y, using (3.3), and substituting
the result into the second of Egs. (3.2). We obtain the relation

Ree?[17, — UV, +— V¥ — 0(e)] = Ty — O(e) +
~—PRee*[Hggg — Ho + O{e)] — yRee?lcoz0 -~ O()] {3.4)
as €0, We introduce the notation
Ree? = %, PRee® = ¥, yRee? = u. )

We postulate that in the limit £ — 0 the quantities w, ¥, and p approach finite values. Physically this assump-
tion means that in Eq. (3.4) the inertial, viscous, capillary, and gravitational forces are of the order of magni-
tude for small €. Letting € —0 in Eq. (3.4) we obtain the equation

2(Vy, = 0Ty = VW) = Vyy — ncost + y(Hep -+ Hy) . : (3.5)
Substituting (3.1) into the last of Egs. (1.1) and into (1.2)-(1.4) and letting € —0 we obtain

U, =71y =0 (3.6)
U=0,V=1a y=40 3.7

H, —VHy —U=0for y-=H, 3.8)
V, =0 for y=H. (3.9)

We note that the relation of the orders of magnitude of u and v indicated in (3.1) as € —0 is unique, and the
limiting equation of continuity (3.6) is nontrivial.

To the boundary conditions (3.7)-(3.9) for system (3.5}, (3.6) must be added the condition that U, V,andH
must be periodic in 6 with the period 27, and the initial conditions

H = Hy®) at t =0 (3.10)
V= TVyy, 0) at ¢=0, (3.11)

where Hy and V; are given functions. The latter is defined in the domain 0 <y < Hy(9). As a consequence of
{3.6) and (3.7) the specification of V at t=0 uniquely determines the initial value of U, We note that for the
initial condition (1.6) for v to agree with the representation (3.1) it is necessary to assume that V= lim v,(1 +
£y, 0) as €0,

Equations (3.5)-{3.11) constitute a boundary-value problem whose solution is interpreted as the motion in
a thin layer of liquid on the surface of a rotating cylinder. Problem (3.5)-(3.11) is rather complicated in view
of its nonlinearity, the degeneracy of Eqs. (3.5) and (3.6), and the presence of an unknown boundary. We re-
strict ourselves to the construction of the formally asymptotic solution of this problem for ®—0. The param-
eters x and p can take on any nonnegative values including zero.

We set ® =0 in Eq. (3.5). Infegrating the equation obtained twice with respect to y and using (3.7) and
(3.9) we find
V= (422 — yH)[pcos® — y(Hgs + H)el -+ 1. (3.12)
From (3.6), (3.7), and (3.12) the expression for U is '

s /

U=% ‘H—%) [kcos O — x (Hoo + H)olo — 5= Ho [ cos 8 —  (Heo + H)o}. {3.13)

Substituting Eqs. (3.12) and (3.13) into (3.8) we find the differential equation for H(6, t)
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m;@—%me%%%mwm+mm=& (3.14)

Equation (3.10) gives the initial condition for this equation.

Suppose x> 0. The linearization of Eq. (3.14) for any positive solution leads to a parabolic equation ac-
cording to Petrovskii [7]. By using a priori estimates of solutions of such equations [7] in combination withthe
method of ‘successive approximations the following statement on the Jlocal solvability of problem (3.14), (3.10)
for ¥ > 0 can be proved.

Let us assume that Hy(6) is a-positive function; periodic in 6 with the.period 27 ,:and belongs fo the
Hilder class C2 ¢ 0 <@ <1. “Then there exists a T 0:such that.problem {3.14),+(3.10)-has:a:amique solution
on the interval 0 <t =T in the class of positive functions which are periodic in 8 with the period 2x. This
solution is infinitely differentiable for 0<t <T.

Since H is proportional to the film thickness, only nonnegative solutions of problem (3.14), (3.10) have a
physical meaning. The fact that H is positive means that the film covers the surface of the cylinder completely.
It would be interesting to prove the existence of a solution of problem (3.14), (3.10) in the large in the class of
nonnegative functions and to find out whether the solution of this problem with H;> 0 vanishes for ¢ > 0.

If x =0, Eq. (3.14) is transformed into the first-order equation
m+(—%mm%=m (3.15)

which was also obtained and studied in [2]. When p = 0 the Cauchy problem (3.15), (3.10) has a smooth solution
on a certain finite time interval for any smooth function H,. In the process of evolution, however, discontinuities
can be formed in the function H.

By determining the function H(0, t)}, =, as the solution of problem (3.14), (3.10) and substitufing the re-
sult into Egs. (3.12) and (3.13) we find the solution of problem (3.5)-(3.10) for ®w=0. The function V(y, 8, t) |y =g
constructed in this way generally does not satisfy the initial condition (3.11). In order to eliminate the dis-
crepancy we introduce the function £ (y, 6, 7, t) which satisfies the relations

E' = Eyy fOl‘ 0 < y < H(67 t)'n-—-(h (3.16)
E=0 at y=0,8 =0 for y = H(B, t)jx=o,
= Vo(y,6) — V(4,080,000 ar 7T=0.

Here 7=%"lt is the "fast time." We assume that Vy=1at y=0and V, =0 for y =H,(6).

The solution of problem (3.16) and all its derivatives decrease exponentially as T — . Therefore, as
w0 the function £ (v, 0, t/%, t) will be a boundary—layer type of function. A direct check shows that the func-
tions H, U, and V determined by the equations

H = H(9, t)ix=q, V = V(y, 0, thu=o + &y, 6, t/x, 1),

,
U=U(y,0, thpeo— | B (2,0, t/x, 1) dz,
0

satisfy Egs. (3.6), (3.7), (3.10), and (3.11), and when they are substituted into Egs. (3.5), (3.8),and (3.9) the value
of the error as n—0at any t, 0<t <T, is of the order O(%). This is the basis for calling the triplet of func-
tions H, U, V the formal asymptotic solution of problem (3.5)-(3.11) as # —0. Functions H, U, V can be con-
structed which satisfy Egs. (3.5)-(3.11) with an accuracy 0(x2) as ®—0, where n is any integer (this moment
is not considered in this paper).

We note that for fixed values of Re and 8 the quantities ® and x approach zero as € —0. However, the
limiting problem for the equations of a thin film when % =x=0 has at least two defects: nonremovable discon-
~tinuities may appear in its solution; it is impossible to specify an arbitrary.initial velocity field for the limiting

equations. .

Since y is proportional to the surface tension, it follows from the preceding discussion that the effect of
capillarity prevents the formation of shock waves in a thin film. The parabolic equation (3.14) is physically a
natural regularization of the hyperbolic equation (3.15) to which the limiting problem reduces, and the param-
eter x is the regularization parameter. '

350



On the other hand, by taking account of the inertial term wVy in Eq. (3.5) problem (3.5)-(3.11) can be
solved for arbitrary initial data. For small n, however, information on the initial velocity field, but not on the
initial film profile, is rapidly forgotten in the motion process.

The author thanks Dr. H. K. Moffat whose work [2] was a stimulus for writing the present paper.
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TURBULENT VISCOSITY FOR INCOMPRESSIBLE GRADIENT
FLOWS BEFORE SEPARATION AND ON A ROUGH SURFACE

V. N. Dolgov and V. M. Shulemovich UDC 532.526

The existing finite-difference methods of turbulent boundary-layer calculation, where various modifica-
tions of turbulent viscosity (mixing path lengths) are used for closure of the system of equations, lead to great
differences between the calculated and experimental data for highly nonequilibrium (close to separation) flows
[1-3]. One of the probable reasons for the observed disagreement is that existing models of turbulent viscosity
contain insufficient information about the previous history of the flow. T particular, the relation for turbulent
viscosity in the external part of a boundary layer [2] or, for instance, the relationship used in [4]

nr = p(Ay.)*|0u/dy| @

in explicit form is quite independent of the previous history. The value of A in (1) is constant and is usually
taken as 0.09.

Correlation of the results of the experiments of Goldberg [3] and Schubauer and Spandenberg [1] showed
that in the external part of the boundary layer the numerical value of A can vary approximately from 0.045 to
0.090, i.e., A #const along the streamline. At the same time, as will be shown below, the value of A can have
a great effect on the fullness of the profile and the integral characteristics of the layer.

To determine the characteristies of the boundary layer before separation the authors of [4, 5] assumed
various forms of dimensionless "universal" velocity profiles and obtained agreement with experiments by the
introduction of empirical coefficients into the velocity profile relations.
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