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1 ,  S t a t e m e n t  o f  t h e  P r o b l e m  

We cons ide r  the t w o - d i m e n s i o n a l  mot ion  of a l iquid f i lm  on the s u r f a c e  of a r o t a t i n g  cy l inde r  in a g r a v i -  
ta t ional  f ield (Fig. 1); a is the r a d i u s  of the  cy l inde r ,  w is i ts cons tan t  angular  ve loc i ty  about  its ax is ,  g is the 
a c c e l e r a t i o n  due to g r av i ty ,  v is the k inema t i c  v i s cos i t y ,  p is its dens i ty ,  and ~ is the s u r f a c e  tens ion .  T h r e e  
independent  d i m e n s i o n l e s s  combina t ions  can be f o r m e d  f r o m  these  quan t i t i e s :  t h e  Reynolds  n u m b e r  Re =a ~ / v ,  
the Gali leo n u m b e r  7 = g / a w  2, and the  i n v e r s e  Webe r  n u m b e r  [3 = ~/paar 2. 

The p r o b l e m  c o n s i s t s  in d e t e r m i n i n g  the  funct ion h(0 ,  t) pos i t ive  for  t ~ [0, T] and all  0, and the so lu -  
t ion u, v, p of  the  N a v i e r - S t o k e s  equat ions  

d't + uur v v~ 2 vo - -  u ) - -  7 sin 0, (1,1) "JI- "7 l'l'O r Pr + Re- '  (Urr "Jr- + Ur Jf - "~ "oo - -  7 

o uo ~  vt -4- UVr -1- "7-Vo "4- "7- = - -  --r Po -1- R e - '  (v r . a r- ~r Vr "]- roe "Jr r'-i'2 uo - -  - ' 7  

(ru)r + t,o = O, 

in the region 1 < r < 1 +h(0, t), I 0 ] <~o, 0 < t < T which satisfy the boundary conditions 

u----O, v =  I at r = 1; (1.2) 

ht ..}_ _.v he  ~ u = 0 at r = 1 -F- h;  ( 1 . 3 )  
r 

t h v r " u e  
r 2 r r 

"~- "-7- hO ur r r vo ----- 0 at  r = t 2v h; (1.4) 

p [( l  + h) '~ + 2h 2 - -  ( l  + h) has] [(1 + 10 2 -~ h~] -3/2 = 
�9 " J 7~2~ - i  

: p - - 2 R e - i ( l - ~ - - - ~ - u o ]  [ u r -  i -7-he ( vr rV . 

, i uo  _~ h2 v 0 - ~  at  r =  l - ~ - h ,  ( 1 . 5 )  

the condi t ion that  h, u, v, and p be  pe r iod ic  in 0 with the pe r iod  27r, and the  init ial  condi t ions  

h =h0(0), u = uo(r, 0), v = v o ( r ,  O) at t = 0. (1.6) 

Here  h0, u0, and v 0 a r e  given func t ions  which a r e  pe r iod ic  in 0 with the pe r iod  2 r ,  and (ru0) r +v0, 0 = 0. 

All quant i t ies  in Eqs.  (1.1)-(1.6) a r e  d imens ion l e s s .  We take the e x p r e s s i o n s  a ,  1 / ~ ,  aw ,  and p a~w 2 as  
length,  t ime ,  ve loc i ty ,  and p r e s s u r e  s c a l e s ,  r e s p e c t i v e l y .  The  Navie r  - Stokes equat ions  (1.1) a re  wr i t t en  in 
polar  c o o r d i n a t e s  r ,  0 with the pole at the cen t e r  of a c r o s s  sec t ion  of the cy l inder  and the polar  axis  p e r -  
pend icu la r  to the d i r ec t ion  o f . g r a v i t y ;  u and v a r e  the r a d i a l  and p e r i p h e r a l  ve loc i ty  componen t s .  

Condit ions (1.2) a r e  the condi t ions  for  no s l ipping  be tween  the liquid and the s u r f a c e  of  the  r o t a t i n g  c y l -  
inder.  Equat ion (1.3) s t a t es  tha t  the f r e e  bounda ry  r = 1 +h(0 ,  t) bounds the l iquid vo lume.  Equat ion (1.4) ex-  
p r e s s e s  the absenc e  of t angen t ia l  s t r e s s  at  the f r e e  bounda ry  and (1.5), t he  equa l i ty  :of the n o r m a l  s t r e s s  and 
the cap i l l a ry  p r e s s u r e .  
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Fig. 1 

A r igo rous  mathemat ical  t rea tment  of the unsteady motion of a viscous liquid with a f ree  boundary, a 
c lass  of problems which includes (1.1)-(1.6), was begun re la t ive ly  recent ly.  By neglecting surface  tension and 
assuming that the entire boundary of the liquid is a f ree  surface ,  Solonnikov [1] proved that the Nav ie r -S tokes  
equations for the unsteady problem have a unique solution on a cer tain finite time interval. By making a small  
cl~nge in the t rea tment  in [1] this theorem can be extended to the case of a boundary of the flow region con- 
si:sting of two nonintersect ing par t s :  a f ree  boundary and a smooth solid surface on which the nonslip condition 
is satisfied. This leads to the following statement on the solvability of problem (1.1)-(1.6) when fl =0. 

We assume that the function h0(0) is positive, periodic in 0 with the period 2 r ,  and belongs to the Hb]der 
c lass  C 2+~ , 0 <a  < 1, and that the functions u0(r, 0),V 0 (r, 0) are a l sope r iod ic in0  wi th theper iod2~andbe long  to 
tile c lass  C 2+(~ in the c losed region ~'~0:1 <_r _< 1 + h 0 (0). In addition, we assume that the initial velocity field u0, v 0 
sat isf ies  the equation of continuity in the region gt 0, the nonslip condition (1.2) at r = 1, and the condition for no 
tangential s t r e s s  (1.4) at r =1 +h 0. Then there  exists a T > 0 such that problem (1.1)-(1.6) with fl =0 has a 
~aique solution on the interval  0 _<t _<T. 

The question of the solvabili ty (even local) of problem (1.1)-(1.6) when fi ~ 0 so far remains  open. 

The problem under considerat ion has a number of technical applications [2]. In these applications the 
thickness of the liquid f i lm is general ly small  in compar ison with the radius of the cylinder. The approximate 
equations descr ib ing the motion of a thin f i lm on the surface  of a rotat ing cylinder for small  Reynolds numbers  
were  derived in [2]. 

The problem of the s teady flow of a heavy liquid on the surface of a rotat ing cylinder is of independent 
interest .  It consis ts  in finding the function h(0) and the t ime-independent solution of the sys tem (1.1) which 
sat isf ies  conditions (1.2)-(1.5) and one of the following subsidiary conditions: 

l--h(0) 

t' v (r, O) dr-~ q; (1.7) 
[ 
2~ 

t' h (0) dO = 2~h (1.8) 
5 

with given positive constants q and h. Condition (1.8) gives the average thickness of the film and (1.7), the flow 
ra te  of liquid through a c ross  section of the film. It is c lear  that the integral on the left-hand side of Eq. (1.7} 
does not depend on 0. Condition (1.7) or (1.8) is n e c e s s a r y  to separate  the unique solution f rom the one -pa ram-  
eter  family  of steady solutions of problem (1.1)-(1.5). 

A theorem on the existence and uniqueness of the solution of the steady problem (1.1)-(1.5), (1.7) for 
small  Galileo numbers  "y was announced in [3]. 

2 .  A T h e o r e m  on  t h e  E x i s t e n c e  a n d  U n i q u e n e s s  o f  t h e  S t e a d y  

S o l u t i o n  

We consider  sys t em (1.1) in the steady case. 

zt 

Introducing the s t r eam function r (r, 0) by the relat ions 

I ~, 0, 
r 00' v=~7-r, (2.1) 

we replace  sys t em (1.1) by a single equation for the s t r e a m  function 

h A ,  R 0 ( , ,  A,) = 0, 
r 0 (r ,  O) 

(2.2) 

where  Ar = r - i ( r ~ r ) r  +r-2~0 0. 
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In the s teady case  we denote the region occupied by the liquid by s and the f ree  boundary,  by F. The 
nonslip conditions (1.2) a r e  satisfied on the outer boundary ~ of region s as a consequence of (2.1) and can be 
wri t ten in the fo rm 

= O, c3~p/Or = I at r = 1. (2.3) 

We fix the a rb i t r a r iness  in the determinat ion of the s t r e a m  function by sett ing r = 0 on the s t reaml ine  r = 1. In 
the steady case the kinematic condi t ion on the: f ree :boundary  ( 1 , 3 ) a n d  the flow ra t e  condi t ion  (1.7) lead to the 
re la t ion  

~p = q  at r =  I +h(O). (2,4) 

The dynamic conditions (1.4) and (1.5) lead to the following conditions for  the s t r e a m  function on the curve  F 

[31: 

A• - -  2KO~p/On = 0 at r = t -4- h (6); (2.5) 

~a:,_t_ 2 035 Re 0 (0r ? OK V [(1 + h) cos e + h e sin O] 
as*an 2 a~ k-g-~] -4-~ ~-~-- [(t_4_h),+h~],r = 0  at r = l + h ( 0 ) ,  (2.6) 

where K is the curva ture  of the curve F, with K > 0 if F is convex outward f rom the liquid. The expression 
a / a s  denotes differentiation along the tangent and 8 /Sn ,  along the outward normal  to F. The positive direction 
of the tangent to the curve  F is chosen so that th e tangential  component of the vector  s is positive (cf. Fig. 1). 
Condition (2.5) follows f r o m  (1.4), (1.3), and (2.1). To obtain (2.6) it is n e c e s s a r y  to differentiate Eq. (1.5) 
along F and to use (1.1) to eliminate the t e r m  ~p/Ss which a r i ses .  To the conditions enumerated is added the 
periodici ty condition 

$(r, B q- 2~) ~- ~(r, B), h(B q- 2n) --~- h(B). (2.7) 

The final formulation of the steady problem is the following: to determine the positive function h(0) and 
the solution r (r, 0) of Eq. (2.2) in the region 1 < r < 1 +h(0) so that Eqs. (2.3)-(2.7) a re  satisfied. If T =0 (no 
gravity),  the problem has a t r ivial  solution r = (r ~ --  1)/2, h = 1/t + 2q--S- t ~- b = corot, descr ibing the rotat ion 
of the liquid as a r igid body. It can be shown that this solution is unique. Solutions of problem (2.2)-(2.7) which 
a re  close to t r ivial  a r e  analyzed below. 

We study this problem with an unknown boundary by t r ans fo rming  to new independent var iables  0, r (yon 
Mises variables) and a new unknown function r = ~ (0, r According to (2.3) and (2.4), in the 0, r plane the 
surface  of the cylinder cor responds  to the s t ra ight  line r = 0 and the f ree  boundary, to the s traight  line ~, =q. 
As a consequence of (2.2) the function ~ sat isf ies  the equation 

where A denotes the differential  opera tor  

The nonslip conditions (2.3) lead to the following conditions for  the function ~ : 

~- - I  -----0, ~r - - I  =0  for ~ = 0 .  (2.9) 

From conditions (2.5) and (2.6) at the free boundary it follows that 

2" t 2 (~ +. ~o - ~oo) A~ --  ~ + ~r (~2 + ~)  = 0 fo, r = qt (2.10) 

- = _ _ _  ~ + 

+ : : ,  1o 

r   2.n) 
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lit is r equ i r ed  to find the solution of Eq. (2.8) in the s t r i p  rI : 0 < r < 1, which sa t i s f i e s  conditions (2.9)-(2.11) 
and is per iod ic  in 0 with the per iod  2v .  

We denote by C~n+a(II)the subspace  of the H6"lder space  c m+~ (n) f o r m e d  by functions which a r e  pe.riodie 
in 0 with the per iod  2 r .  He re  m_>0 is an in teger ,  0 < a  < 1, and I l i s  the c losu re  of 1I. We denote by I �9 I(~ 4~) 
the n o r m  in this space.  The symbols  C ~  +a (E), I �9 t ( ~ + a )  have a s i m i l a r  meaning,  where  E is a r ea l  s t ra ight  
line. Co, C 1 . . . .  a r e  pos i t ive  constants :  We define a function ~, = ] /{  T2-~. This  function is the solution of 
p r o b l e m  (2.8)-(2.11) for  T =0. 

THEOREM. For  all  q>  0, Re ___0, and fl~-0 t he r e  exis ts  a To > 0 such that for  ~ ~ [0, 70] p rob l e ms  (2.8)- 
(2.11) has the solution ~ ~ C~+~([-I), which is unique in a ce r t a in  sphere  1 ~ -  ~o (~+~)~ " IS ~ L" 0 �9 

We prove  this t h e o r e m  by Newton's  method.  We define a Banach space  X as  the space  of the vec tor  func- 
l ions x ={ x 1 . . . . .  xs I ,  where  x~(0, , )  ~ C~(]]), xk (0) ~ C g-k+= (E) fo r  k =2 . . . . .  5. The n o r m  in this space  is 

5 

= IXll  Y 
h ~ 2  

We t r e a t  the boundary  value p r o b l e m  (2.8)-(2.11) as an ope ra to r  equation of the f o r m  

F(~) = 0, (2.12) 

where  the ope ra to r  F(~)  is defined in a sphe re  B~ :l ~ - -  ~,l~ +~) < c  of the space  C~+a(lI)= Z by the equation 
F ( [ )  ={ FI(~) . . . .  , Fs(~) } and ope ra t e s  in the space  X. The components  F 1 . . . . .  F 5 of the vec tor  F a r e  the dif- 
f e ren t i a l  exp re s s ions  on the le f t -hand  s ides  of Eq. (2.8), the f i r s t  and second conditions (2.10) and (2.11), r e -  
spect ively .  For  example ,  F 3 (~)= ~r - 1  for  r .-0. 

We take the F r6che t  de r iva t ive  of the ope ra to r  F(~) in the sphe re  Bc(0 <c < 1)o We denote by Fz(~)  its 
F r6che t  de r iva t ive  at the point z ~ B~ and set  11 ~llz = i~ I~ +~).  Simple ca lcula t ions  show that  for  all  ~l and ~2 
f r o m  B c 

where  C 3 and C 4 depend only on Re,  fl , a ,  and c. It is c lear  a lso  that F ( [  0) . {  0, 0, 0, 0 , - T c o s 0 }  and 
II F(~0)II x _<4~. For  the following it is e s sen t i a l  that  the l inear  ope ra to r  F~ 0 have an inve r se  (F}0) -~ : X - -  Z, 
and that the e s t ima te  (proved later)  

11-<< (2.13) 
be valid for all fixed q > 0, Re >~ 0, ~ >i 0, a ~ (0, I) and all T from the interval [0, TI] if TI > 0 is sufficiently 
small. 

We introduce the notation C2=C ~ + ToC4 and choose To (0 < To -<Ti) small enough so that 16TOC2C2 < 1. 
Then for 5' ~ [0, '/o] the conditions of Kantorovich's theorem on the convergence of Newton's operator method 
[4] are satisfied for Eq. (2.12). According to this theorem, if 5 =16TOC2C2< 1, Eq. (2.12) for 0 _< T -< To has a 
unique solution in the sphere 1] ~ -~0[Iz -<Co, where Co = min[C~(l -- 3/I -- 5)/2Cs, c]. The sequence {~ n}, in 
which to = 3 / t  -4- 2~ and 

;= = ~=_, -- (F ; J - '  F (~_,) (2.14) 

for n_> 1 converges to this solution. 

' has aninverse and to derive the estimate (2.13). Letus consider It remains to prove that the operator F~0 
the linear equation 

F;o (~) = x, (2.15) 

where  x is an a r b i t r a r y  e lement  of the space  X. The change of va r i ab l e s  r = 3 / i  + 2 %  ~ -~ ~/r  t r a n s f o r m s  the 
homogeneous  p r o b l e m  for  ~0 (r, 0) co r respond ing  to (2.15) to the f o r m  

AAg --tleArf0 = 0 for l < r < :  t ~- b = 3 /1-= 2q, 
qc = %. ~ 0  at r = t , '  

9 
A ~ - - ~ q ~ o o - -  2 -'-~-- qYr = 0 at r = t T b ,  

(2 .i6) 
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. '? 
-:- "fi-. (q~0 sin 0 --q~ cos 0) = 0 at r = 1 -~ b, 

q~(r, 0 +  2~t) - -  q~(r, 0). 

We show that  for  suff icient ly smal l  values  of Y this  p r o b l e m  has only a t r iv i a l  solution. The solution of p rob-  
l e m  (2.16) sa t i s f i e s  the identi ty 

t-{-b 2~t 2~I 

t \z ' ,.,,+,+.,. , - -  7 q : r - -  j ' ~ ( t + b  O)cosOdO, (2.17) 
t ~ 0 

which is obtained b y  mult iplying the f i r s t  of  Eqs .  (2.16) by q ,  in tegrat ing o v e r  t h e  annulus 1 < r < 1 § and 
u s i n g  the boundary  conditions.  By v i r tue  of Korn ,s  inequality for  two-d imens iona l  solenoidal  v e c t o r  f ields [51 
and a t h e o r e m  of Sobolev on t r~es ,+  it  follows f r o m  (2.17) that q =0 if 0 _< y_< Yl and Yl is suff icient ly smal l .  

The boundary o p e r a t o r s  in (2.16) sa t i s fy  the complemen ta r i t y  condition [6] with r e s p e c t  to the ope ra to r  
/XZX-ReZXa/00. T h e r e f o r e ,  the absence  of nont r iv ta l  solut ions of the homogeneous p rob l em (2.16) impl ies  the 
unique solvabi l i ty  of the co r respond ing  inhomogeneous p r o b l e m  and Eq. (2.15) for  any x ~ X. The inequality" 
(2.13) follows f r o m  a p r i o r i  e s t i m a t e s  in [6]. Thus the t h e o r e m  is proved.  

We note that as  Y - - 0  the solution of p r o b l e m  (2.1)-(2.11) can be e s t ima ted  by 

l ~ - V I - ~  [~ +~ = o (v) (2.1s) 

For sufficiently small T this estimate ensures the one-sheeted mapping of the strip II onto the flow region 1 < 
r < 1 +h(0),  0 ~ E. The s o l u t i o n ,  ~ C *+~ (~),h ~ O+a (E)0f the two-d imens iona l  s teady p rob l em of a f i lm c o r -  
responds  to the solution ~ o + = ( r l )  of p r o b l e m  (2.8)- (2.11). 

The a sympto t i c  solution of p rob l em  (2.8)-(2.11) for  sma l l  T can be ref ined.  According to (2.14) the 
second t e r m  gl  of  the r e c u r r e n t  sequence { ~n} as T - ' 0  can be wr i t t en  

~1 = " V T ' - + - ~  It + ? (t  + 2~)-",:p(1/] + 2'r o) ] + 0 (r  

Here  (p (r, 0) is the solution of the l inear  p rob l em (2.16) in which the second boundary condition at r =1 +b is 
r ep l aced  by 

+ (+r - -  r ) o o .  " ;  (+. - -  -, = - -  co+ r = : + b  

The foilowing e s t ima te  holds: 

I ~ - -  ~'~1~ +~) = 0 (~,") as 'l' ---'. O. (2,19) 

To derive Eqs. (2.18) and (2.19) it is sufficient to use the estimate of the error of the modified Newtou's 
method [4]. Equation (2.19) e s t i m a t e s  how c lose ly  the l inear  t e r m  Ct approx ima tes  the solution C of p rob lem 
(2.8)-(2.11) for  sma l l  T. 

R e m a r k  1. The solution of p r o b l e m  (2.8)-(2.11), which means  a lso  the solution of the initial  p r o b l em 
(2.2)-i2.7), depends continuously on the p a r a m e t e r  fl in any finite r ange  of its var ia t ion .  In pa r t i cu l a r ,  it is 
a s s u m e d  that  fl = 0 (zero su r f ace  tension).  

R e m a r k  2. Using the e s t i m a t e s  of the solut ions of ell iptic equations [6] it can be shown that the solution 
~( , ,0 )  ~ v 4 ~ ( ~ )  of p r o b l e m  (2.8)-(2.11) ac tua l ly  belongs to the c lass  C~176 This  impl ies  that  the veloci ty  
f ield and the f r ee  boundary co r respond ing  to it a r e  a lso  infinitely differ:entiable. 

R e m a r k  3. In formula t ing  the two-d imens iona l  s teady p rob l em of a f i lm it would be poss ib le  to speci fy  
the ave rage  f i lm th ickness  h r a t h e r  than the flow r a t e  q. In view of the re la t ion  h(0) = L (0, q) - 1  and (2.18) 
the re  is a one- to -one  re la t ion  between these  quant i t ies  for  sma l l  T 

~ =  1/ l  -4- 2q --  1 + 0('?). 

3.  E q u a t i o n s  o f  M o t i o n  o f  a T h i n  F i l m  

Let us a s s u m e  that  the initial  value of the function h has  the f o r m  h 0 = s H0(0), where  s > 0 is a sma l l  
p a r a m e t e r .  The p a r a m e t e r  ~ has the meaning of the r a t io  of a c h a r a c t e r i s t i c  (for example ,  average)  th ickness  
of the f i lm to the rad ius  of the cyl inder .  The s ta r t ing  point for  the der ivat ion of  the equations of a thin f i lm is 
the r ep r e sen t a t i on  

h = ell, r = i + eg, u = e U, v-~ V, (3.1) 
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,rod the  a s s u m p t i o n  tha t  H, U, V and the i r  d e r i v a t i v e s  with r e s p e c t  to t ,  0 ,  and the new independent  va r i ab l e  y 
r e m a i n  f ini te  as  e - , 0 .  Subst i tut ing (3.1) into the f i r s t  two equat ions  of (1.1) and condi t ion (1.5) leads  to the 
equat ions  

! , I U ,  ' - -  V: + 0 (~) = --  -T" Pv - R-~ ~ ~'v 0 (~)] --  7 sin 0. (3.2) 

r ,  , -  u v y  + vv+  + o (~) = - i t  + o (~)1 P+ = 

1 
l{ee 2 [V,~v ~- 0 (e)] --  y cos 0 for 0 < y < H (e, t); 

- -  ~eIHoo -" H "+" O(e)] = P - -  2Re-l[Uv -- O(e)] for y = H(0. 1). (3.3) 

w h e r e  p = p /3. I n :de r iv ing  Eq. (3.3) accoun t  was  t a k e n  of  t h e  fac t  that  in v iew of  (1.4) Vy(H, 0,  t) =O(e)  as  e--.0. 

We d e t e r m i n e  P(y;  0,  t) by  in t eg ra t ing  the f i r s t  of Eqs.  (3.2) with r e s p e c t  to y,  us ing  (3.3), and subs t i tu t ing  
the r e s u l t  into the s econd  of  Eqs .  (3.2). We obtain the r e l a t i o n  

Re~ ~[V t + U V  v + VV0 + 0 ( ~ ) ]  = l-y v --O(e) + 

+~Ree3[H000 + H0 + O(e)] --  yRee~-[cos 0 --  0(e)] (3.4) 

as  e ~ 0. We in t roduce  the  nota t ion  

Re e2 = • 13Ree3 = Z, Y Ree~ = i t. 

We pos tu la te  tha t  in the l imi t  e ~ O the quant i t ies  x ,  •  and p a p p r o a c h  f ini te  va lues .  Phys ica l ly  this  a s s u m p -  
t ion m e a n s  that  in Eq. (3.4) the ine r t i a l ,  v i s c o u s ,  c ap i l l a ry ,  and g rav i t a t iona l  f o r c e s  a r e  of  the o r d e r  of m a g n i -  
tude for  sma l l  e .  Le t t ing  e- - -0  in Eq. (3.4) we-obta in  the equat ion 

z(l-, UI-,j + VV0 ) = Vvv - -  9 cos 0 + z(H00 + Ho) �9 (3.5) 

Subst i tu t ing (3.1) into the  las t  of Eqs.  (1.1) and into (1.2)-(1.4) and le t t ing  e - - 0  we obtain  

Uv + ] ' 0  = 0; (3.6) 
U = 0,  V -~- t a t  y = 0; (3.7) 

H t + VHo --  U = 0 for y = H; (3.8) 
V v = 0  for y = H .  (3.9) 

We note  tha t  the r e l a t i o n  of  the o r d e r s  of magni tude  of u and v indicated  in (3.1) as  ~ 0  is unique,  and the 
l imi t ing  equat ion of cont inui ty  (3.6) is non t r iv ia l .  

To the b o u n d a r y  condi t ions  (3.7)-(3.9) fo r  s y s t e m  (3.5), (3.6) mus t  be added the  condi t ion that  U, V, andH 
m u s t  be  pe r iod i c  in 0 with the pe r iod  2 r ,  and the init ial  condi t ions  

H = H o ( 0 )  a t  t = 0 ;  ( 3 . 1 0 )  

V = V o ( u ,  0) at t = 0 ,  (3.11) 

w h e r e  H 0 and V 0 a r e  given funct ions .  The  la t t e r  is def ined in the domain  0 < y < H0(0 ). As a consequence  of 
(3.6) and (3.7) the spec i f i ca t ion  of  V at  t = 0  uniquely d e t e r m i n e s  the init ial  va lue  of U. We note  that  fo r  the 
ini t ial  condi t ion (1.6) fo r  v to a g r e e  with the r e p r e s e n t a t i o n  (3.1) it is n e c e s s a r y  to a s s u m e  that  V0= lira v0(1 + 
ey, 0) as  e--*0. 

Equations (3.5)-(3.11) cons t i tu te  a b o u n d a r y - v a l u e  p r o b l e m  whose  solut ion is i n t e rp re t ed  as  the mot ion  in 
a thin l a y e r  of l iquid on the s u r f a c e  of  a r o t a t i n g  cy l inde r .  P r o b l e m  (3.5)-(3.1D is r a t h e r  compl i ca t ed  in view 
of its non l inea r i ty ,  the d e g e n e r a c y  of Eqs.  (3.5) and (3.6), and the p r e s e n c e  of an unknown boundary .  We r e -  
s t r i c t  o u r s e l v e s  to the c o n s t r u c t i o n  of the f o r m a l l y  a sympto t i c  solut ion of this  p r o b l e m  for  x ~ 0 .  T h e  p a r a m -  
e t e r s  )/ and p can  take  on any nonnega t ive  va lues  including ze ro .  

We se t  x =0 in Eq. (3.5). In t eg ra t ing  the  equat ion obta ined  twice  with r e s p e c t  to y and us ing  (3.7) and 
(3.9) we find 

V = @-/2 - -  yH) [~t cOS 0 --  z(H00 + H)01 + i. (3.12) 

F r o m  (3.6), (3.7), and (3.12) the e x p r e s s i o n  fo r  U is 

U = + (H --  [~t cos 0 --  % (Ho+ + H)o]+ ~ Ho [~ cos 0 --  ;r (Hoo + H)o]. (3.13) 

Subst i tut ing Eqs.  (3.12) and (3.13) into (3.8) we find the d i f fe ren t ia l  equat ion fo r  H(0,  t) 
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(3.14) 

Equation (3.10) gives the initial  condition for  th is  equation. 

Suppose X> 0. The l inear iza t ion  of Eq. (3.14) for  any posi t ive  solution leads to a parabol ic  equation a c -  
cord ing  to Pe t rovsk i i  [7]. By using a p r io r i  e s t ima te s  of solut ions of such equations [7] in combination wi th the  
method o f : succes s ive  approx[mat ivns  the follovcing :statement on  the  l o c a l  solvabi l i ty :of  :problem (3.14), (3.10) 
for  )~ > 0 can be proved.  

Let us a s s u m e  that H0(0 ) [s a pos i t i ve  func t i on ;pe r i od i c  in 0 ~with t h e p e r i o d  2~ ,,and belongs  to the  
Hhqder c l a s s  C 4 + ~ ,  0 <~  <1~ T h e n : t h e r e  exists:a!T~>:.~)~uch:~t:problem:(3,:t4),:~(3~.lO)~:has:a~uniq~tesolutton 
on the in terva l  0 _~t _~T in the c lass  of posi t ive  functions which a r e  per iodic  in 0 with the per iod  2 r .  This  
solution is infinitely di f ferent iable  for  0 < t _~T. 

Since H is propor t iona l  to the f i lm th ickness ,  only nonnegative solutions of p rob l em (3.14), (3.10) have a 
phys ica l  meaning.  The fact  that  H is pos i t ive  means  that  the f i lm cove r s  the su r face  of the cyl inder  complete ly .  
It would be in te res t ing  to p rove  the exis tence  of a solution of p rob l em (3.14), (3.10) in the l a rge  in the c l a s s  of 
nonnegat ive functions and to find out whether  the solution of this p r o b l e m  with H 0 > 0 vanishes  for  t > 0. 

If ~ =0, Eq. (3.14) is t r a n s f o r m e d  into the f i r s t - o r d e r  equation 

which was a lso  obtained and studied in [2]. When p ~ 0 the Cauchy p rob l em (3.15), (3.10) has a smooth  solution 
on a ce r t a in  finite t i m e  in terva l  f o r  any smooth  function H 0. In the p roce s s  of evolution, however ,  discontinuit ies  
can be f o r m e d  in the function H. 

By de te rmin ing  the function H(0,  t)]~t=0 as  the  solution of p r o b l e m  (3.14), (3.I0) and subst i tut ing the r e -  
sult into Eqs. (3.12) and (3.13) we find the solution of p rob l em (3.5)-(3.10) for  ~t=0. The function V(y, 0, t) [~=0 
cons t ruc ted  in this way genera l ly  does not sa t i s fy  the initial  condition (3.11). In o rde r  to e l iminate  the d is -  
c r epancy  we introduce the function $ (y, 0, T, t) which sa t i s f i e s  the r e l a t ions  

~, - -  ~uy for 0 <:  y < H(0,  t)l~ffio, (3.16) 
= 0  at y = 0 ,  ~y = 0  for y = S ( 0 ,  t)lx=0, 

= vo(y,o) - v ( y ,  o, 0)1,,=o ~t �9 = o. 

Here  ~ =~t-lt  is the "fas t  t ime ."  We a s s u m e  that V0=l  at y = 0  and V0,y=0 for  Y=H0(0). 

The solution of p r o b l e m  (3.16) and a l l  its de r iva t ives  d e c r e a s e  exponential ly as  T--* ~o. The re fo re ,  as  
~t--*0 the function ~ (y, 0, t / ~ ,  t) will  be  a b o u n d a r y - l a y e r  type of function. A d i rec t  check shows that the func-  
t ions H, U, and V de te rmined  by the equations 

H = H(O, t ) t ~  o, V ----- V(y,  O, t ) ~ o  + ~(y, O, t /x,  t), 
It 

U = U (y, 0, t)l~=0 ~ .t" ~o (x, O, t/z, t) dx, 
0 

sa t i s fy  Eqs. (3.6), (3.7), (3.10), and (3.11), and when they a r e  subst i tuted into Eqs. (3.5), (3.8), and (3.9) the value 
of the e r r o r  as  ~--*0 at any t ,  0 < t ~ T ,  is of the o rde r  O(~). This  is the bas i s  for  cal l ing the t r ip le t  of func-  
t ions H, U, V the f o r m a l  a sympto t i c  solution of p r o b l e m  (3.5)-(3.11) as  ~t --*0. Functions H, U, V can be con-  
s t ruc ted  which sa t i s fy  Eqs. (3.5)-(3.11) with an a c c u r a c y  0(~t n) as ~t--*0, where  n is any integer  (this moment  
ts not cons idered  in this  paper) .  

We note that  for  fixed values  of Re and t i t h e  quant i t ies  ~ and X approach  zero  as  ~--*0. However ,  the 
l imi t ing  p r o b l e m  for  the equations of a thin f i lm when ~t =x=O has a t  l eas t  two defects :  non removab le  d iscon-  

t i n u i t i e s  may  appea r  in its solution; it is imposs ib le  to  s p e c i f y a n  a rb i t r a ry . i n i t i a l  ve loc i ty  f ield for : the  l imit ing 
equations.  

Since X is p ropor t iona l  to the su r face  tension,  it follows f r o m  the p r e c e d i n g  d iscuss ion  that the effect  of 
c a p i l l a r i t y  p reven ts  the fo rma t ion  of shock waves  in a thin f i lm.  The parabol ic  e q u a t i o n  (3 ; t 4 ) t s  phys ica l ly  a 
na tura l  r egu la r i za t ion  of the hyperbol ic  equation (3.15) to which the l imi t ing  p r o b l e m  reduces ,  a n d [ h e  p a r a m -  
e ter  X is the r egu la r i za t ion  p a r a m e t e r .  
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On the other hand, by taking account  of the iner t ia l  t e r m  ~<V t in Eq. (3.5) p r o b l e m  (3.5)-(3.11) can be 
solved for  a r b i t r a r y  initial  data. For  smal l  ~, however ,  informat ion on the initial  ve loci ty  field, but not on the 
initial f i lm  prof i le ,  is rap id ly  forgot ten  in the motion p roce s s .  

The author thanks Dr. H. K. Moffat whose work [2] was a s t imulus  for  wri t ing the p resen t  paper .  
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T U R B U L E N T  V I S C O S I T Y  F O R  I N C O M P R E S S I B L E  G R A D I E N T  

F L O W S  B E F O R E  S E P A R A T I O N  A N D  ON A R O U G H  S U R F A C E  

V. N. D o l g o v  a n d  V. M. S h u l e m o v i c h  UDC 532.526 

The exis t ing f in i t e -d i f fe rence  methods of turbulent  bounda ry - l aye r  calculat ion,  where  var ious  modi f ica-  
t ions of turbulent  v i scos i ty  (mixing path lengths) a r e  used for  c lo su re  of the s y s t e m  of equations,  lead to grea t  
d i f fe rences  between the calcula ted and exper imen ta l  data for  highly nonequi l ibr ium (close to separat ion)  flows 
[1-3]. One of the probable  r e a s o n s  for  the obse rved  d i s ag reemen t  is that exis t ing models  of turbulent  v i scos i ty  
contain insufficient  informat ion about the p rev ious  h i s to ry  of the flow. In pa r t i cu la r ,  the re la t ion  for turbulent  
v i scos i ty  in the externa l  par t  of a boundary l ayer  [2] or ,  for  instance,  the re la t ionsh ip  used in [4] 

~ = p ( X g e ) 2 1 O u / O y l  (1) 

in explicit  f o r m  is quite independent of the previous  h is tory .  The value of ~ in (1) is constant  and is usual ly  
taken as 0.09. 

Cor re la t ion  of the r e s u l t s  of the exper iments  of Goldberg [3] and Schubauer and Spandenberg [1] showed 
that  in the ex te rna l  par t  of the boundary l ayer  the n u m e r i c a l  value of ~ can va ry  approx imate ly  f r o m  0.045 to 
0.090, i . e . , / ,  ~cons t  along the s t r eaml ine .  At the s ame  t ime,  as will be shown below, the value o f / ,  can have 
a g rea t  effect  on the ful lness  of the p ro f i l e  and the in tegra l  c h a r a c t e r i s t i c s  of the layer .  

To de t e rmine  the c h a r a c t e r i s t i c s  of the boundary  layer  before  separa t ion  the authors  of [4, 5] a s su med  
va r ious  f o r m s  of d imens ion less  , u n i v e r s a l ,  ve loci ty  prof i les  and obtained a g r e e m e n t  with exper iments  by the 
introduction of e m p i r i c a l  coeff ic ients  into the ve loc i ty  prof i le  re la t ions .  
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